The
omplete

Reference

212

C++: The Complete Reference

two complete I/O systems: the one inherited from C and the object-oriented

system defined by C++. This chapter covers the C file system. (The C++ file
system is discussed in Part Two.) While most new code will use the C++ file system,
knowledge of the C file system is still important for the reasons given in the preceding
chapter.

T his chapter describes the C file system. As explained in Chapter 8, C++ supports

C Versus C++ File 1/0

There is sometimes confusion over how C's file system relates to C++. First, C++
supports the entire Standard C file system. Thus, if you will be porting C code to
C++, you will not have to change all of your I/O routines right away. Second, C++
defines its own, object-oriented 1/O system, which includes both I/O functions and
[/0O operators. The C++ 1/O system completely duplicates the functionality of the C
I/0 system and renders the C file system redundant. While you will usually want to
use the C++ [/O system, you are free to use the C file system if you like. Of course,
most C++ programmers elect to use the C++ 1/0 system for reasons that are made
clear in Part Two of this book.

Streams and Files

Before beginning our discussion of the C file system, it is necessary to know the difference
between the terms streams and files. The C I/O system supplies a consistent interface
to the programmer independent of the actual device being accessed. That is, the C 1/0O
system provides a level of abstraction between the programmer and the device. This
abstraction is called a strean and the actual device is called a file. It is important to
understand how streams and files interact.

Note I The concept of streams and files is also important to the C++ 1/O system discussed in
— Part Two.

___| streams

The C file system is designed to work with a wide variety of devices, including terminals,
disk drives, and tape drives. Even though each device is very different, the file system
transforms each into a logical device called a stream. All streams behave similarly. Because
streams are largely device independent, the same function that can write to a disk file
can also be used to write to another type of device, such as the console. There are two
types of streams: text and binary.

Chapter 9: File.1/0

Text Streams

A text stream is a sequence of characters. Standard C allows (but does not require) a
text stream to be organized into lines terminated by a newline character. However,
the newline character is optional on the last line. (Actually, most C/C++ compilers do
not terminate text streams with newline characters.) In a text stream, certain character
translations may occur as required by the host environment. For example, a newline
may be converted to a carriage return/linefeed pair. Therefore, there may not be a
one-to-one relationship between the characters that are written (or read) and those
on the external device. Also, because of possible translations, the number of characters
written (or read) may not be the same as those on the external device.

Binary Streams

]

A binary strean is a sequence of bytes that have a one-to-one correspondence to those
in the external device—that is, no character translations occur. Also, the number of
bytes written (or read) is the same as the number on the external device. However,

an implementation-defined number of null bytes may be appended to a binary stream.
These null bytes might be used to pad the information so that it fills a sector on a disk,
for example.

Files

In C/C++, a file may be anything from a disk file to a terminal or printer. You associate
a stream with a specific file by performing an open operation. Once a file is open,
information may be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can support random
access while some printers cannot. This brings up an important point about the C1/O
system: All streams are the same but all files are not.

If the file can support position requests, opening that file also initializes the file
position indicator to the start of the file. As each character is read from or written to
the file, the position indicator is incremented, ensuring progression through the file.

You disassociate a file from a specific stream with a close operation. If you close
a file opened for output, the contents, if any, of its associated stream are written to the
external device. This process is generally referred to as flushing the stream, and guarantees
that no information is accidentally left in the disk buffer. All files are closed automatically
when your program terminates normally, either by main() returning to the operating
system or by a call to exit(). Files are not closed when a program terminates abnormally,
such as when it crashes or when it calls abort().

Each stream that is associated with a file has a file control structure of type FILE.
Never modify this file control block.

If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide

; C++: The Complete Reference

a consistent interface. You need only think in terms of streams and use only one file
system to accomplish all I/O operations. The I/0 system automatically converts the
raw input or output from each device into an easily managed stream.

File System Basics
The C file system is composed of several interrelated functions. The most common of

these are shown in Table 9-1. They require the header stdio.h. C++ programs may also
use the C++-style header <cstdio>.

Name Function
fopen() Opens a file.
fclose() Closes a file.
pute() Writes a character to a file.
fpute() Same as putc().
getc() Reads a character from a file.
fgete() Same as getc().
fgets() Reads a string from a file.
fputs() Writes a string to a file.
fseek() Seeks to a specified byte in a file.
ftell() Returns the current file position.
fprintf() Is to a file what printf() is to the console.
fscanf() Is to a file what scanf() is to the console.
feof() Returns true if end-of-file is reached.
ferror() Returns true if an error has occurred.
rewind() Resets the file position indicator to the
beginning of the file.
remove() Erases a file.
fflush() Flushes a file.
Table 9-1. Commonly Used C File-System Functions

Chapter 9: File 1/0

The header file stdio.h and <cstdio> header provide the prototypes for the /O
functions and define these three types: size_t, fpos_t, and FILE. The size_t type is some
variety of unsigned integer, as is fpos_t. The FILE type is discussed in the next section.

Also defined in stdio.h and <cstdio> are several macros. The ones relevant to this
chapter are NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_END.
The NULL macro defines a null pointer. The EOF macro is generally defined as -1
and is the value returned when an input function tries to read past the end of the file.
FOPEN_MAX defines an integer value that determines the number of files that may
be open at any one time. The other macros are used with fseek(), which is the function
that performs random access on a file.

The File Pointer

The file pointer is the common thread that unites the C1/O system. A file pointeris a
pointer to a structure of type FILE. It points to information that defines various things
about the file, including its name, status, and the current position of the file. In essence,
the file pointer identifies a specific file and is used by the associated stream to direct the
operation of the I/O functions. In order to read or write files, your program needs to use
file pointers. To obtain a file pointer variable, use a statement like this:

! FILE *fp;

Opening a File
The fopen() function opens a stream for use and links a file with that stream. Then
it returns the file pointer associated with that file. Most often (and for the rest of this
discussion), the file is a disk file. The fopen() function has this prototype:

FILE *fopen(const char *filename, const char *mode);

where filename is a pointer to a string of characters that make up a valid filename and
may include a path specification. The string pointed to by mode determines how the file
will be opened. Table 9-2 shows the legal values for mode. Strings like "r+b" may also be
represented as "rb+."

Mode Meaning
r Open a text file for reading.
w Create a text file for writing.
a Append to a text file.

Table 9:2. The Legal Values for Mode

216 C++: The Complete Reference

Mode Meaning

rb Open a binary file for reading.

wb Create a binary file for writing.

ab Append to a binary file.

r+ Open a text file for read /write.

w+ Create a text file for read /write.

a+ Append or create a text file for
read /write.

r+b Open a binary file for read /write.

w+b Create a binary file for read / write.

a+b Append or create a binary file for
read/write.

Table 9-2. The Legal Values for Mode (continued)

As stated, the fopen() function returns a file pointer. Your program should
never alter the value of this pointer. If an error occurs when it is trying to open
the file, fopen() returns a null pointer.

The following code uses fopen() to open a file named TEST for output.

FILE *fp;
fp = fopen("test", "w");

Whiie technically correct, you will usually see the preceding code written like this:

FILE *fp;

if ((fp = fopen("test","w"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;

This method will detect any error in opening a file, such as a write-protected or a full
disk, before your program attempts to write to it. In general, you will always want to
confirm that fopen() succeeded before attempting any other operations on the file.

Chapter 9: File 1/0

Although most of the file modes are self-explanatory, a few comments are in order.
If, when opening a file for read-only operations, the file does not exist, fopen() will fail.
When opening a file using append mode, if the file does not exist, it will be created.
Further, when a file is opened for append, all new data written to the file will be written
to the end of the file. The original contents will remain unchanged. If, when a file is
opened for writing, the file does not exist, it will be created. If it does exist, the contents
of the original file will be destroyed and a new file created. The difference between
modes r+ and w+ is that r+ will not create a file if it does not exist; however, w+ will.
Further, if the file already exists, opening it with w+ destroys its contents; opening it
with r+ does not.

As Table 9-2 shows, a file may be opened in either text or binary mode. In most
implementations, in text mode, carriage return/linefeed sequences are translated to
newline characters on input. On output, the reverse occurs: newlines are translated
to carriage return/linefeeds. No such translations occur on binary files.

The number of files that may be open at any one time is specified by FOPEN_MAX.
This value will usually be at least 8, but you must check your compiler’s documentation
for its exact value.

Closing a File

The fclose() function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in the disk buffer to the file and does a formal operating-
system-level close on the file. Failure to close a stream invites all kinds of trouble,
including lost data, destroyed files, and possible intermittent errors in your program.
fclose() also frees the file control block associated with the stream, making it available
for reuse. There is an operating-system limit to the number of open files you may have
at any one time, so you may have to close one file before opening another.

The fclose() function has this prototype:

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero signifies
a successful close operation. The function returns EOF if an error occurs. You can use the
standard function ferror() (discussed shortly) to determine and report any problems.
Generally, fclose() will fail only when a disk has been prematurely removed from the
drive or there is no more space on the disk.

Writing a Character

The C I/O system defines two equivalent functions that output a character: putc() and
fputc(). (Actually, putc() is usually implemented as a macro.) There are two identical
functions simply to preserve compatibility with older versions of C. This book uses
putc(), but you can use fputc() if you like.

218 C++: The Complete Reference

The putc() function writes characters to a file that was previously opened for
writing using the fopen() function. The prototype of this function is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ¢/ is the character to be output.
The file pointer tells putc() which file to write to. Although c# is defined as an int,
only the low-order byte is written.

If a putc() operation is successful, it returns the character written. Othe ‘wise, it

returns EOF.

Reading a Character

There are also two equivalent functions that input a character: getc() and fgetc().

Both are defined to preserve compatibility with older versions of C. This book uses

getc() (which is usually implemented as a macro), but you can use fgetc() if you like.
The getc() function reads characters from a file opened in read mode by fopen().

The prototype of getc() is
int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). getc() returns an integer,
but the character is contained in the low-order byte. Unless an error occurs, the high-
order byte is zero.

The getc() function returns an EOF when the end of the file has been reached.
Therefore, to read to the end of a text file, you could use the following code:

i
g‘éﬁ do {
%“{; ch = getc(fp);
.) while(ch!=EOF);

Wk
R

However, getc() also returns EOF if an error occurs. You can use ferror() to determine
precisely what has occurred.

Using fopen(), getc(), putc(), and fclose()

The functions fopen(), getc(), putc(), and fclose() constitute the minimal set of file
routines. The following program, KTOD, is a simple example of using putc(), fopen(),
and fclose(). It reads characters from the keyboard and writes them to a disk file until
the user types a dollar sign. The filename is specified from the command line. For example,
if you call this program KTOD, typing KTOD TEST allows you to enter lines of text

into the file called TEST.

Chapter 9:

/* KTOD: A key to disk program. */
#include <stdio.h>
#inclu:de <stdlib.h>

int main(int argc, char *argvll)
{

FILE *fp;

char ch;

if{argc!=2) {
printf("You forgot to enter the filename.\n");
exit (1) ;

if((fp=fopen(argv[l], "w"))==NULL) {
printf ("Cannot open file.\n");
exit(1l);

do {
ch = getchar();
putc(ch, fp}:

} while (ch != '$');

fclose (fp);

return 0O;

File 1/0

The complementary program DTOS reads any text file and displays the contents on

the screen. It demonstrates gete().

]
%% /* DTOS: A program that reads files and displays them
%% on the screen. */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]:
{

FILE *fp;

char ch;

219

220 C++: The Complete Reference

if(argc!=2) ¢
printf ("You forgot to enter the filename.\n") ;

exit (1) ;

}

if((fp=fopen(argv([l], "r"))==NULL) {
printf ("Cannot open file.\n"):
exit (1) ;

}

ch = getc(fp); /* read one character */

while (ch!=EOQF) {
putchar(ch); /* print on screen */
ch = getc(fp);

fclose(fp);

return 0;

To try these two programs, first use KTOD to create a text file. Then read its
contents using DTOS.

Using feof()

As just described, getc() returns EOF when the end of the file has been encountered.
However, testing the value returned by getc() may not be the best way to determine
when you have arrived at the end of a file. First, the file system can operate on both
text and binary files. When a file is opened for binary input, an integer value that will
test equal to EOF may be read. This would cause the input routine to indicate an end-of-file
condition even though the physical end of the file had not been reached. Second, getc()
returns EOF when it fails and when it reaches the end of the file. Using only the return
value of getc(), it is impossible to know which occurred. To solve these problems, the
C file system includes the function feof(), which determines when the end of the file
has been encountered. The feof() function has this prototype:

int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0. Therefore,
the following routine reads a binary file until the end of the file is encountered:

while (! feof(fp)) ch =

Chapter 9: File 1/0

getc (fp);

Of course, you can apply this method to text files as well as binary files.
The following program, which copies text or binary files, contains an example of
feof(). The files are opened in binary mode and feof() checks for the end of the file.

/* Copy a file. */
#include <stdio.h>
#include <stdlib.h>

int main{int argc, char
{

FILE *in, *out;

char ch;

if(argc!=3) {
exit(l);

if ((in=fopenf{argvil],
printf ("Cannot open
exit (1) ;

}
printf ("Cannot open

exit(1l);

/* This code actually

fclose(in);
fclose(out) ;

return 0;

if((out=fopen(argv([2],

*argv[])

printf("You forgot to enter a filename.\n");

"rh"))==NULL) {
source file.\n");
"wb")) == NULL) {

destination file.\n");

copies the file. */

while(!feof{in)) {

ch = getc(in);

if (1 feof (in)) putc(ch, out);
}

221

222

C++: The Complete Reference

Working with Strings: fputs() and fgets()

In addition to getc() and putc(), the C file system supports the related functions
fgets() and fputs(), which read and write character strings from and to a disk file.
These functions work just like putc() and getc(), but instead of reading or writing
a single character, they read or write strings. They have the following prototypes:

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The fputs() function writes the string pointed to by str to the specified stream.
It returns EOF if an error occurs.
The fgets() function reads a string from the specified stream until either a newline

character is read or length -1 characters have been read. If a newline is read, it will be part
of the string (unlike the gets() function). The resultant string will be null terminated. The

function returns str if successful and a null pointer if an error occurs.

The following program demonstrates fputs(). It reads strings from the keyboard
and writes them to the file called TEST. To terminate the program, enter a blank line.
Since gets() does not store the newline character, one is added before each string is
written to the file so that the file can be read more easily.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
char str{80};
FILE *fp;

if((fr = fopen("TEST", "w"))==NULL) {
printf ("Cannot open file.\n");
1

exit(1l);

do {
printf ("Enter a string (CR to quit):\n");
gets(str);
strcat (str, "‘n"); /* add a newline */
fruts(str, fp);

} while({*str!='"\n");

return 0;

Chapter 9: File 1/0

rewind()

The rewind() function resets the file position indicator to the beginning of the file
specified as its argument. That is, it "rewinds” the file. Its prototype is

void rewind(FILE *fp);

where fp is a valid file pointer.

To see an example of rewind(), you can modify the program from the previous
section so that it displays the contents of the file just created. To accomplish this, the
program rewinds the file after input is complete and then uses fgets() to read back
the file. Notice that the file must now be opened in read/write mode using "w+"
for the mode parameter.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)

{

char str[80];

FILE *fp;

if((fp = fopen{"TEST", "w+")!==NULL) {
printf ("Cannot open file.\n");
exit(1l);

}

do {
printf (“Enter a string (CR zo quit):\n");
gets(str);
strcat (str, "\n"); /* add a newline ~*/
fputs (stx, fp);

} while(*str!='\n');

/* now, read and display the file *~/
rewind(fp); /* reset file position indicatcr o
start of the file. */
while(!feof (fp)) {
fgets(str, 79, fp);
printf(str):

224 C++: The Complete Reference

return O;

ferror()

The ferror() function determines whether a file operation has produced an error. The
ferror() function has this prototype:

int ferror(FILE *fp);

where fp is a valid file pointer. It returns true if an error has occurred during the last
file operation; otherwise, it returns false. Because each file operation sets the error
condition, ferror() should be called immediately after each file operation; otherwise,
an error may be lost.

The following program illustrates ferror() by removing tabs from a file and
substituting the appropriate number of spaces. The tab size is defined by TAB_SIZE.
Notice how ferror() is called after each file operation. To use the program, specify the
names of the input and output files on the command line.

/* The program substitutes spaces for tabs
in a text file and supplies error checking. */

#include <stdio.h>
#include <stdlib.h>

#define TAB_SIZE 8
#define IN C
#define OUT 1
void err(int e);
int main(int argc, char *argv(])
FILE *in, *out;
int tab, 1i;
char ch;
if(argc!=3) {

printf ("usage: detab <in> <out>\n");
exit (1) ;

if((in = fopen(argv(1l], "rb"))==NULL) ({

Chapter 9: File 1/0

printf ("Cannot open %s.\n", argv([1l]);

exit (1) ;

}

if ((out = fopen(argv[2], "wb"))==NULL) {
printf ("Cannot open %s.\n", argv[1l]);
exit (1) ;

}

tab = 0;

do {
ch = getc{in);
if(ferror(in)) err (IN);

/* if tab found, output appropriate number of spaces */
if(ch=="\t"') {
for(i=tab; 1<8; i++) {

putc{' ', out);
if (ferror{out)) err(OUT);
}
tab = 0;
}
else {
putc (ch, out);
if(ferror(out)) err(OUT);
tab++;
if(tab==TAB_SIZE) tab = 0;
if(ch=="\n' || ch=='\r') tab = 0;

}
} while(!feof (in));
fclose(in);
fclose(out);

return 0O;

void err(int e)

{
if {e==IN) printf("Error on input.\n");

else printf("Error on output.\n");

exit (1) ;

225

226 C++: The Complete Reference

Erasing Files

The remove() function erases the specified file. its prototype is
int remove(const char *filename);

It returns zero if successful; otherwise, it returns a nonzero value.
The following program erases the file specified on the command line. However, it
first gives you a chance to change your mind. A utility like this might be useful to new

Computer users.

/* Double check before erasing. */
#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

int main(int argc, char *argv([])
{
char str[80];

if(argc!=2) {
printf ("usage: xerase <filename>\n");

exit (1) ;
}
printf ("Erase %s? (Y/N): ", argv([1l]);
gets (str);
if (toupper (*str)i=='Y")
if (remove (argv([1])) {
printf ("Cannot erase file.\n");
exit (1) ;
}
return 0;

Flushing a Stream
If you wish to flush the contents of an output stream, use the fflush() function, whose
prototype is shown here:

int fflush(FILE *fp);

Chapter 9: File 1/0 227

This function writes the contents of any buffered data to the file associated with fp.
If you call fflush() with fp being null, all files opened for output are flushed.
The £flush() function returns 0 if successful; otherwise, it returns EOF.

fread() and fwrite()

To read and write data types that are longer than one byte, the C file system provides
two functions: fread() and fwrite(). These functions allow the reading and writing
of blocks of any type of data. Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *o);
size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from
the file. For fwrite(), buffer is a pointer to the information that will be written to the
file. The value of count determines how many items are read or written, with each
item being num_bytes bytes in length. (Remember, the type size_t is defined as some
type of unsigned integer.) Finally, fp is a file pointer to a previously opened stream.

The fread() function returns the number of items read. This value may be less than
count if the end of the file is reached or an error occurs. The fwrite() function returns
the number of items written. This value will equal count unless an error occurs.

Using fread() and fwrite()

As long as the file has been opened for binary data, fread() and fwrite() can read
and write any type of information. For example, the following program writes and
then reads back a double, an int, and a long to and from a disk file. Notice how it
uses sizeof to determine the length of each data type.

/* Write some non-character data to a disk file
and read it back. */

#include <stdio.h>

#include <stdlib.h>

int main(void)
{
FILE *fp;
double d = 12.23;
int i = 101;
long 1 = 123023L;

228

C+4+: The Complete Reference

if((fp=fopen("test", "wb+"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;

fwrite(&d, sizeof (double), 1, fp);
fwrite(&i, sizeof(int), 1, fp);
fwrite(&l, sizeof(long), 1, fp);
rewind(fp) ;

fread(&d, sizeof (double), 1, fp);
fread(&i, sizeof(int), 1, fp);
fread(&l, sizeof (long), 1, fp):
printf("%£f %4 %1d4d", 4, i, 1);

fclose(fp);

return 0O;

As this program illustrates, the buffer can be (and often is) merely the memory used to

hold a variable. In this simple program, the return values of fread() and fwrite() are

ignored. In the real world, however, you should check their return values for errors.
One of the most useful applications of fread() and fwrite() involves reading

and writing user-defined data types, especially structures. For example, given this

structure:

struct struct_type {
float balance;
char name{80};

} cust;

the following statement writes the contents of cust to the file pointed to by fp.

fwrite(&cust, sizeof (struct struct_type), 1, £fp);

Chapter 9: File 1/0 229

__| fseek() and Random-Access 1/0

You can perform random-access read and write operations using the C1/0 system with
the help of fseek(), which sets the file position indicator. Its prototype is shown here:

int fseek(FILE *fp, long int numbytes, int origin);

Here, fy is a file pointer returned by a call to fopen(). numbytes is the number of bytes
from origin that will become the new current position, and origin is one of the following

Macros:
Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK_CUR
End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK_SET. To
seek from the current position, use SEEK_CUR; and to seek from the end of the file,
use SEEK_END. The fseek() function returns 0 when successful and a nonzero value
if an error occurs.

The following program illustrates fseek(). It seeks to and displays the specified
byte in the specified file. Specify the filename and then the byte to seek to on the
command line.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])
{
FILE *fp;

if (argc!=3) {
printf ("Usage: SEEK filename byte\n") ;
exit(1l);

}

if ((fp = fopen(argv(l], "rb"))==NULL) {
printf ("Cannot open file.\n");

230

C++: The Complete Reference

exit(1l);

if (fseek(fp, atcl{argv(2]), SEEK_SET)) ¢
printf ("Seek error.\n");
exit(1l);

printf ("Byte at %1ld is %c.\n", atol(argv[2]}), getc(fp));
fclose(fp);

return 0;

You can use fseek() to seek in multiples of any type of data by simply multiplying
the size of the data by the number of the item you want to reach. For example, assume
that you have a mailing list that consists of structures of type list_type. To seek to the
tenth address in the file that holds the addresses, use this statement:

fseek (fp, 9*sizeof (struct list_type), SEEK_SET);

You can determine the current location of a file using ftell(). Its prototype is
long int ftell(FILE *fp):

[t returns the location of the current position of the file associated with fp. If a failure
occurs, it returns —-1.

In general, you will want to use random access only on binary files. The reason
for this is simple. Because text files may have character translations performed on
them, there may not be a direct correspondence between what is in the file and the
byte to which it would appear that you want to seek. The only time you should use
fseek() with a text file is when seeking to a position previously determined by ftell(),
using SEEK_SET as the origin.

Remember one important point: Even a file that contains only text can be opened
as a binary file, if you like. There is no inherent restriction about random access on files
containing text. The restriction applies only to files opened as text files.

___| fprintf() and fscanf()

In addition to the basic [/O functions already discussed, the C 1/0 system includes
fprintf() and fscanf(). These functions behave exactly like printf() and scanf()
except that they operate with files. The prototypes of fprintf() and fscanf() are

Chapter 9: File 1/0 231

int fprintf(FILE *fp, const char *control_string,. . .);
int fscanf(FILE *fp, const char *control _string,. . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct
their 1/0 operations to the file pointed to by fp.

As an example, the following program reads a string and an integer from the keyboard
and writes them to a disk file called TEST. The program then reads the file and displays
the information on the screen. After running this program, examine the TEST file. As
vou will see, it contains human-readable text.

/* fgcanf() - fprintf() example */
#include <stdio.h>

#include <io.h>

#include <stdlib.h>

int main(void)
{
FILE *fp;
char s[80];
int t;

if({(fp=fopen("test", "w")) == NULL) {
printf ("Cannot open file.\n");
exit (1) ;

printf ("Enter a string and a number: ") ;
fscanf (stdin, "%s%d", s, &t); /* read from keyoboard */

fprintf (fp, "%s %d", s, t); /* write to file */
fclose(fp);
if((fp=fopen(*"test","r")) == NULL) {

printf ("Cannot open file.\n");

exit (1) ;
}
fscanf (fp, "%s%d", s, &t); /* read from file */
fprintf (stdout, "%s %d", s, t); /* print on screen */
return 0;

C++: The Complete Reference

A word of warning: Although fprintf() and fscanf() often are the easiest way to
write and read assorted data to disk files, they are not always the most efficient.
Because formatted ASCII data is being written as it would appear on the screen
(instead of in binary), extra overhead is incurred with each call. So, if speed or file size
is a concern, you should probably use fread() and fwrite().

The Standard Streams

As it relates to the C file system, when a program starts execution, three streams are
opened automatically. They are stdin (standard input), stdout (standard output), and
stderr (standard error). Normally, these streams refer to the console, but they may be
redirected by the operating system to some other device in environments that support
redirectable I/O. (Redirectable 1/Q is supported by Windows, DOS, Unix, and OS/ 2,
for example.)

Because the standard streams are file pointers, they may be used by the C 1/0
system to perform I/O operations on the console. For example, putchar() could be
defined like this:

int putchar (char c)
{

return putc(c, stdout):

In general, stdin is used to read from the console, and stdout and stderr are used to
write to the console.

You may use stdin, stdout, and stderr as file pointers in any function that uses a
variable of type FILE *. For example, you could use fgets() to input a string from the
console using a call like this:

char str[2557;
fgets(str, 80, stdin);

In fact, using fgets() in this manner can be quite usetul. As mentioned earlier in this
book, when using gets() it is possible to overrun the array that is being used to receive
the characters entered by the user because gets() provides no bounds checking. When
used with stdin, the fgets() function offers a useful alternative because it can limit the
number of characters read and thus prevent array overruns. The only troubie is that
fgets() does not remove the newline character and gets() does, so you will have to
manually remove it, as shown in the following program.

Chapter 9: File 1/0 233

#include <stdio.h>
#include <string.h>

int main(void)
{
char str{80];
int 1;

printf("Enter a string: ")};
fgets(str, 10, stdin);

/* remove newline, if present */
i = strlen{str)-1;
if(str(il=='\n') str(i]l = '\C';

printf{"This is your string: %s", str);

return 0;

}

Keep in mind that stdin, stdout, and stderr are not variables in the normal sense
and may not be assigned a value using fopen(). Also, just as these file pointers are
created automatically at the start of your program, they are closed automatically at
the end; you should not try to close them.

The Console |/0 Connection

There is actually little distinction between console 1/0 and file I/O. The console I/O
functions described in Chapter 8 actually direct their /O operations to either stdin or
stdout. In essence, the console 1/0 functions are simply special versions of their parallel
file functions. The reason they exist is as a convenience to you, the programmer.

As described in the previous section, you can perform console I/0 using any of the
file system functions. However, what might surprise you is that you can perform disk
file I/O using console I/O functions, such as printf()! This is because all of the console
1/0 functions operate on stdin and stdout. In environments that allow redirection
of 1/0, this means that stdin and stdout could refer to a device other than the keyboard
and screen. For example, consider this program:

o
e

L%
i

#include <stdio.h>

234

C++: The Complete Reference

int main{void)
{
char str([80];

printf ("Enter a string: "“);
getsistr);
printf(str);

return 0;

Assume that this program is called TEST. If you execute TEST normally, it displays its
prompt on the screen, reads a string from the keyboard, and displays that string on the
display. However, in an environment that supports 1/O redirection, either stdin, stdout,
or both could be redirected to a file. For example, in a DOS or Windows environment,
executing TEST like this:

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST
like this:

! TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
When a program terminates, any redirected streams are reset to their default status.

Using freopen() to Redirect the Standard Streams

You can redirect the standard streams by using the freopen() function. This function
associates an existing stream with a new file. Thus, you can use it to associate a standard
stream with a new file. Its prototype is

FILE *freopen(const char *filename, const char *mode, FILE *stream);

where filename is a pointer to the filename you wish associated with the stream
pointed to by stream. The file is opened using the value of mode, which may have
the same values as those used with fopen(). freopen() returns stream if successful
or NULL on failure.

Chapter 9: File 1/0 235

The following program uses freopen() to redirect stdout to a file called OUTPUT:

#include <stdio.h>

int main(void)

{
char str([80];
freopen ("OUTPUT", "w", stdout):
printf ("Enter a string: ");
gets(str);

printf (str);

return 0;

In general, redirecting the standard streams by using freopen() is useful in special
situations, such as debugging. However, performing disk I/0 using redirected stdin
and stdout is not as efficient as using functions like fread() or fwrite().

